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Periodic Systems

e Structure of periodic systems

— Bravais Lattice: Periodicity
periodic unit: unit cell vectors
ai, a, a3
Cell volume: Q..
Lattice points: ﬁ = nia1+noan —I—n3d’3

— Basis: Structure within a unit
— positions and types of atoms: 7;, Z;

e Examples:

Wire (1-D)

Surface (2-D)
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Crystal (3-D)

Cluster (0-D) a
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Unit Cell and Choices
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Number of atoms per unit cell (basis)

For unit cells 1 and 2, Ng = 2.
For unit cell 3, Ny = 4.

Primitive unit cell: Ng is the smallest
All choices should give equivalent description



Reciprocal Space

e Fourier Transfrom: f(¥) — £(q)

e Periodic Boundary Conditions:
f( )—f(r_l_Nzaz)
Born von Karmen conditions:
exp(iq - Nyd;) =1
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e For a function with lattice periodicity:
fr) =+ R),
q = mlbl -+ meQ -+ m3b3 and b '6j =
2704 =G
b;: primitive vectors of reciprocal space
lattice
ed. by = 2mdp X a3/
(G: reciprocal space lattice (RSL) vector



e Brillouin Zone (BZ):
Wigner Seitz cell in RS,
volume, Qp, = (27)3/Qu

e FOor a general function:

§=k+G,
n1 n3y
k = b + b2 + N3b3

k € pr|m|t|ve cell of the RSL or BZ.
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e Long length-scales: L; = N;la;|,x 1/Ak
Short length-scales: Ar o« 1/Gmax



Periodic systems: Electron wavefunctions

e Translational symmetry: TRH = Hfﬁ

e Bloch theorem:

Ry(7) = ¢ (7 + R) = exp(ik - R)y(7)
k is a quantum number to label (N
Y1 (F) = exp(ik - P)u(7)
uz(7+ R) = uz(7) is lattice periodic.

e For each E, discrete energy eigenvalues:
€7 form energy bands
€7 non-analytic only at BZ-boundary

e Integrals in k—space (in DFT):

(M) =3 | dkltz (DI



Representation of wifé: Plane Waves

exp(ik - 7)Y Cﬁz exp(iG - 7)
G

¢ZE(F) - \/chll

Plane Waves: < 7lG >= \/Q g exp(iG - 7)

G_; _ — . — —
o Cz‘E = o  <G|IF> uik(r)dr

cell
e Orthonormality: < @\@’ >= 045 A

e NO dependence on the basis of a crystal
— Computation of forces easy!

e A single parameter: E..
G € basis set, if 3|G|? < Ecyt

e Uniform resolution in direct space:
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Plane Waves (contd)

e Plane wave cutoff for density:
2cht — 4Byt

Same cutoff, but
G lattice constant changed

e FFT essential for efficiency:
eqg. V(©)y (7). convolution in G-space!

e Basis set depends on the lattice constant:
Pulay corrections



Symmetry

Time reversal symmetry:
non-magnetic systems ¢. » = (T

Inversion symmetry:
7 — —7 leads to real C%.
1

Point symmetries S: SH = HS
rotations, reflections, inversions and com-
binations.

@bi,g—l]g(F — @DZ,E(S’F)

also an eigenfunction with energy €7

Space Groups (230):

combination of point and translational sym-
metries

Irreducible representations (Irrep):

* point group of k: S c Gy if Sk =k

x Star of k: k = Sk Ng vectors.

D(Irrep of the space group): D = Dirrepofay, X
N



Symmetries (contd)

Irreducible BZ (IBZ):

The smallest region in the BZ such that
there are no two k's that belong to the
same star.

Knowledge of wavefunctions in IBZ =
wavefunctions elsewhere in the BZ.

Irrep labels at various k's determine the
symmetry of localized Wannier functions.

Band structure plots often are shown along
the high symmetry lines.



BZ Integration: Special k-points

e Accurate integration:

Ry = 2B23° 10y
gy MR = Ny %:f '

e Symmetries: [, replaced by [;5,

— A scalar property: eg. €7

wy. weight of a k-point.

— Scalar field: eg. density
pl(f'? — ZE@E[BZwkp(k‘i’F)
p(7) = > g p1(S7)



Special k-points

o f(k) =X 5f(R)exp(ik- R)
f(R) decays off exponentially (insulators).

e Baldereschi point:
e there is a mean value point (MVP) where
the integrand equals the integral
e symmetries = approx. locatin of MVP
eg. SC: k= (7/2a)(1,1,1)
BCC: k = (27/a)(1,1,3)/6.

e Chadi and Cohen schemes:
Generalization of the MVP idea to get
larger sets

e Monkhorst-Pack k-points:
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— Uniform mesh; exact integration for Fourier
components R up to N;b;.

— Scaled reciprocal lattice with an offset.

— N; = 2 for SC gives the Baldereschi
point

— For cubic case, even N; recommended:
avoids high symmetry k's (eg. (000)
and BZ boundaries)

— Note: even N; meshes do not satisfy
BvK conditions.



Symmetry of MP k-point mesh

(-1,1,0) (0,1,0)

AN N
- (,OO)/V .

e Symmetry of the hexagonal lattice is bro-
ken by an even N, Monkhorst-Pack mesh.

e However, a shift in this mesh restores its
symmetry.

e an odd N; M-P mesh maintains the hexag-
onal symmetry.



kK-point sampling: Metals

Presence of Fermi surface:
= D|scont|nU|t|es in occupation numbers f;.:

eJd. fBZ de Zk‘
Smear or smoothen the occupation numbers:

scale = Ae = kgT
Various schemes of smearing a delta function:

e Fermi-Dirac smearing: 0.25/cosh?(xz/2)

e Gaussian smearing: exp(—z2)//m
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Use of smearing in obtaining density of states.

N;. for convergence increseas with small Ae
and band gap.



—

k—points: Practicalities

e Supercell calculations:
Brillouin zone is smaller
Number of PW is larger
Mapping for identical representation:

E3+éS:E

e Perturbation calculations:
perturbation with wave vector g

—

Ideally, for any k,

k+ gy e {k}
= supercell commensurate with g, has equiv-
alent set of k—points.



Summary

Plane wave cutoff E.,; controls the small-
est length-scale

—

k—points control the longest length-scale

—

k—points applicable to electrons and phonons

Various k—point schemes for BZ sampling

Number of k-points should increase with
decreasing band gap and smeating T.

Use of symmetries allows treatment of only
symmetry inequivalent E—points and re-
duces computation.
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