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Relevance of vdW interactions
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» Gas law.
» surface tension.

» Hydrocarbon
sublimation heats.

» Organic molecules
adsorption(OLEDs,
OFETSs)

» Crystal packing of
Org. Mol.

» Protein folding.
» CNT interactions.




van der Waals Interactions &

All molecular interactions other than those due to: Covalent
bonds, lonic attractions and Permanent dipoles:

» Permanent dipole - Induced dipole.

» Instantaneous induced dipole - dipole. Charge distributions
on the atoms are not rigid — London dispersion forces.

London Dispersion Formula (Classical model):
Electric field at R E=2p/R®

P

'::" = Placing another atom at R p2 = aE
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From Quantum Mechanics

It is needed as molecules or atoms without permanent dipoles
are considered! From a series expansion of the potential
energy and perturbation theory, London showed that the
second' term (associated with dipolar transitions):
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which can be expressed in terms of atomic polarizabilities and
ionization energies
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The first is null if there is not permanent dipoles



Proposed schemes to treat vdW in DFT
London dipersion interactions are naturally out of range for
commonly used LDA and GGA xc functionals. Attempts to
solve this shortcoming:
» Ad hoc methods:

1. Fitting of Cg coefficients: DFT-D (Grimme).

2. Obtaining Cgs from the interaction between localized
electronic densities of the fragments: Sato (constituent
atoms), Silvestrelli (MLWF), Tkatchenko-Sheffler (atomic
densities).

» First principles methods.

1. LC-DFT (Long range correction).

2. Seamless van der Waals Density Functional.

3. Meta-GGAs

4. ACFDT (Adiabatic connection Fluctuation Disipation
Theorem)

» Midway methods.
Take partially into account the electronic nature of the vdW
interactions.

1. DFT+LAP (Local Atomic Potentials.)

2. DCAC (Dispersion Corrected Atom Centered.)



First principles methods

1) LC Scheme (Long range Correction) Phys.Rev.Lett.76:102 (1996)
xc energy associated with two distant charge distur-
bances of an uniform electron gas:

E. = /d3r1 /d3r2KXC(r1,rg)én(n)én(rg)

With:

e = [/AE)2) (/er) + /()]

and taking the long range limit:
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where wp(r) = \/4re?n(r)/m (plasma freq.) Like if

e in each atom respond as a uniform eg.



First principles methods
Finally, in terms of charge densities:
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Phys.Rev.Lett.76:102 (1996)



First principles methods

2) Seamless vdW Density Functional.

Evln] = E®™%F[n] + E°A[n] + E[n]

where:

EMn) = %/d3r/d3r’n(r)¢(r, ryn(r’)
o(r,r') = ¢(q(r),q(r))

q(r) = q(n(r), Vn(r)):
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vdw-DF

Long range correlation derived from:

1.
2.

Adiabatic connection formula.

Approximate coupling-constant integration —¢, exact for
the long range limit.

. Use of an approximated dielectric function (single pole

form).

. Pole position scaled to give exact electron gas ground

state energy locally.



Midway methods

LAP and DCAC:

. J. Chem. Phys. 129, 154102 (2008)
In both schemes the vdW interac-
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Ad hoc methods

vdW: electron-electron — atom-atom interactions mediated by
pair contributions of the form:

C
IJ ll
vdW *22

Damping function (to avoid both singularity and ¢ double
counting for short distances:

ij

1

fij(Rij) = 1 +exp(—a(Rij/Rs — 1))

where Rs = R/ + R]VdW



Ad hoc methods

Ce coefficients can be obtained from:
» Fitting to benchmark calculations or experimental data
when available. (J.Comp.Chem.25:1463)
The drawback here lies in its lack of transferability —
Dependence of coeffiecients to the bonding enviroment of
atoms.

» Calculated in somehow.



Cs from Maximally Localized Wannier Functions

J. Phys. Chem. A, Vol. 113, Ne. 17, 2009

MLWF are obtained from a unitary transfor-
mation over the occupied K-S orbitals, to
minimize:

Q = >~ ((wn|r?|wn) — (walr|wn)?)

Silvestrelli proposed to decompose the elec-
tronic density in terms of maximally localized
Wannier functions (MLWF). ‘:
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Substituting n(r) = w?(r) in the LC expres-
sion:
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Ce from Wannier Functions

Dispersion coefficient:

c8 327r3/2 |r|<rc Ir|<r, Wn r) ‘|' wi(r')

The cutoff radius and are calculated equating the length scale
for density change to the electron gas screening length:

re = S,V/3[0.769 + 1/2In S,).

The vdW correction is then:
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MLWFs method to vdW. What is needed?

» Definition of interacting fragments in terms of atoms rather
than MLWFs.
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MLWFs method to vdW. What is needed?

» Definition of interacting fragments in terms of atoms rather
than MLWFs.

» Molecular and crystalline systems in the same ground.
» Handling of vdW interactions anisotropy (layered systems).



vdW-MLWFs into ABINIT. New imput variables.

1. vdw xc: Selects the type of vdW scheme to be used.
MLWFs approach is chosen with vdw_xc=10. Default value
0, no vdW correction.
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vdW-MLWFs into ABINIT. New imput variables.

1. vdw xc: Selects the type of vdW scheme to be used.
MLWFs approach is chosen with vdw_xc=10. Default value
0, no vdW correction.

2. vdw nfrag: Its absolute value is the number of interacting
vdW fragments in the unit cell. If vdw_nfrag > 1 then
MLWFs are translated to the original unit cell, otherwise
the program will keep the positions obtained by
Wannier90. Default is zero.

3. vdw typfrag: Integer array of nat om components.
Associate each atom with one of the vdw_nfrag vdW
interacting fragments. No default.

4. vdw supercell: Three component integer array.
Determine the number of neighbor cells along positive and
negative directions of each primitive vector for which vdW
interactions will be taken into account. Default value
(0,0,0).



Some results and testing:Ars
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Figure: vdW-DF (taken from Phys.Rev.Lett. 92:246401), Silvestrelli’s
Phys.Rev.Lett. 100:053002



Some results and testing:

Benzene dimer (S)
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Figure: Comparison between ABINIT implementation to Silvestrelli
results and experiment.



Solid Argon (FCC)
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Figure: Cohesive energy of Ar FCC, convergence of vdW correction.



Benzene crystal
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First principles methods

2) Seamless vdW Density Functional.

Evln] = E®™%F[n] + E°A[n] + E[n]

where:

EMn) = %/d3r/d3r’n(r)¢(r, ryn(r’)
o(r,r') = ¢(q(r),q(r))

q(r) = q(n(r), Vn(r)):
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New Developments in vdW-DF

» Numerical Efficiency: Guillermo Roman-Pérez and José
Soler. Efficient implementation of a van der Waals Density
Functional: Application to Double-Wall Carbon Nanotubes.
Phys. Rev. Lett. 103: 096102 (2009). Currently being
implemented into ABINIT.

Exc[n] = EF"7PF[n] + ELPAIn] + EY'[n]
where
EM'[n) = %/d3f1 /d3f2n(f1)¢(f17f2,f12)”(f2)
the proposal is:

#(a1, G2, 12) = Y #(Gas G, 112)Pal(G1)P5(G2)
ap

which allows to factorize the kernel and obtain a sum of
convolution like integrals.



New Developments in vdW-DF

» Accuracy: Kyuho Lee, Eamonn D. Murray, Lingzhu Kong,
Bengt |. Lundqvist and David. C. Langreth. A
Higher-Accuracy van der Waals Density Functional.

arXiv:1003.5255v1 (2010). Also known as vdW-DF2.
vdW-DF drawbacks:

1. Understimation of hydrogen bond strenght.
2. Overestimation of bond lenghts.
» Valentino R. Cooper. Van der Waals Density Functional:

An appropiate exchange functional. Phys. Rev. B. 81:
161104(R) (2010).



Summary

1. Work done

» The method based on MLWFs to evaluate has been coded:
/abinit/src/67_common/evdw_wannier .F90.

» Currently the spin polarized version is under testing.

» vdW-DF is in development and also under testing: Coded
module: /Srec/56 _xc/m_xc_vdw.F90:
xc_vdw_aggregate, xc_vdw_dft, xc_vdw_done,
xc_vdw_get_params, xc_vdw_init,
xc_vdw_memcheck, xc_vdw_read, xc_vdw_set_functional,
xc_vdw_show,
xc_vdw_write, vdw_df filter, vdw_fft, vdw_ldaxc

» V09 exchange coded as native functional in ABINIT (ixc
24).
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» vdW-DF is in development and also under testing: Coded
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» V09 exchange coded as native functional in ABINIT (ixc
24).

2. Work to do

Automatic tests for the vdW-MLWF spin polarized
implementation.

Debugging and testing of the vdW-DF non local functional.
Atomatic tests for vdW-DF.

Update documentation.
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