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Overview

@ A brief introduction to the Bethe-Salpeter formalism
® BSE in the electron-hole representation

® The GW+BSE code of Abinit

® Implementation details

® Future developments



Overview

@ A brief introduction to the Bethe-Salpeter formalism
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MBPT and excitations

Phys. Rev. Lett. 96, 226402 (2006)
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o Charged excitation energies are well described within GW gaps are in much better
the GW approximation for the self-energy agreement with experiments

@ Absorption spectra are directly connected to the

many-body irreducible polarizability X \ ‘—/ c
4

€G.G> (q7 CU) = 5G1G2 = U(q = Gl) )ZG1G2 (q7 CU),

)
1 N
epr (W) = lim — /

= €00 (q7 w)

\ : Neutral excitation energies are the
Loca.| field poles of the irreducible polarizability
effects included

Ve -—\ ',-\.\
- J\_/H ’ s

p—




Ab-initio absorption spectra

RPA polarizabilites:
X (12) = —i G*°(12)GRP(21)

eV (12) = —i GV (12)GEW (21)

o RPA with GW corrections leads to a blue-shifted
spectrum

© The first peak is missing. Important phenomena
are not captured by the RPA!

The exact many-body polarizability

¥(12) = —iG(13) '(34; 2) G(41)

-

Vertex function

Vertex corrections are needed to describe the
phenomena involved in neutral excitations



Hedin’s pentagon and BSE

Full set of equations The GW approximation

Beyond GW: the second iteration of the pentagon

Yaw(12) = iG(12) W(12) 522%%2) :i5(13)5(24)W(12)+73G§g

: > : ; . . =
Using T'=1+ s GGT one obtains an equation for I'and a new approximation for X



BSE in a nutshell

The BSE must be formulated in terms of the four-point functions L(11’,22") and L°(11/,22")

X(12) = L(11,22)\ VH(12) = E2EE 208

Contracting gives the

z many-body polarizabilit
Integral equation for L: = .

L=IL"+L°KL — L=[1-L°K]"'L"

Local field effects are included by using the modified kernel —

/between electron and hole

K (1234) = 5(12)8(34)5(13) — 5(13)5(24)W (12)

o .
_ — , : v(q) = v(q) ieq 7& J The inversion of €G; G,
with the modified Coulomb interaction /¢ thteavoided!




Overview

BSE in the electron-hole representation



BSE in the e-h basis set

Phys. Rev. B 62, 8, 4927 (2000)
= 1. Select a finite basis set thus discretizing the equation
L=[1-L°K]'L° :

2. Solve the problem with matrix algebra

1) Kohn-Sham states are used to expand the four-point functions

F(1234) = Z F(nins)(nana) ) (D) Y0, (2) Yn, (3)¢L4 (4) n=(bk,o)

(n1n2)
(n3na)

(f’fLQ = f’fll)

O is diagonal in the KS basis set L(n1n2)(n3n4)(w) — (

5?’!,1 ns 572,2 ngy
)

2) After some algebra one obtains: , =
Two-particle Hamiltonian

—1

(n1n2)(n3n4)(

L(nyna)(nana) (W) = [H — w] frs = frs)

(c,v,k,0)

We have assumes a static Wand an energy gap (n1,n9) =
(U7 C7 k? O-)



Spectra from the BSE

Local field effects are included
. = / via the modified kernel
ep(w) =1 — lim v(q) Xoo(q, w)

Using the matrix notation in the e-h basis set
‘,U/C/> ‘C/,U/>
| F F=| (v | 1 0

and using x(12) = L(11, 22)

the macroscopic dielectric function can be expressed as:

e (w) =1 — lim v(q) (P(q)|[H — w] ™ F|P(q))

q—0

Dipole operator in

/ the e-h representation

P(Q)nyny = (n2le"™|n1) = dnyn, + 90 - (n2rfna) + O(%)

1. spin

Cecio e aolihedipole: 2. irreducible representations



The BS Hamiltonian

Phys. Rev. B 62, 4927-4944 (2000)

In spin-unpolarized systems only singlet B nsppol=3
states contribute to the optical properties v—W =20 -W
|”U/C/> ‘C’U/> R = R' Resonant block
H = <UC R C Cc—€ Coupling block
>|< -
<CU =—C R H # HY dueto O

Ris diagonal dominant: Transition energies
on the diagonal

R(fuc)(v’c’) = (66 = E'v)(svv’écc’ =2 K(vc)(v’c’)
In extended systems, C' is smaller than R

C(vc)(c’fv’) = K(vc)(c’v’)
v'd) )

= e R 0
(cv|] | O —R*

Tamm-Dancoff approximation (TDA) neglects




Spin structure of the BSE

Phys. Rev. B 77, 184408 (2008)

P(Q)nlm

~q—0 5”1”2 +1q - <n2|r|n1>

Only spin-preserving transitions
(violet region) contribute to €um (w)

1) EOREr |
Ot | [ 0 0 0
(. D T-W+o| O 0
& 0 0 T—W
(11 0 0 0 |T-W
The resonant block now consists of four spin-dependent blocks
v'c’ 1) v'e 1) T = (5T
vet | | (T —W +o)7 v
ve | i (T — W + )+




Does it work?

Rev. Mod. Phys. 74, 601-659 (2002)
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Silicon absorption spectrum
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® The GW+BSE code of Abinit
®
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GW+BSE flowchart

Files are used to connect the different steps

Different MPI algorithms optimized for the
different run-level

Fortran-1O or MPI-1O for reading and writing

Big arrays are MPI-distributed with the
exception of W

Matrix-vector operations are done in parallel
using a column-wise decomposition

In-core and out-of-core solution for W

The first NC implementation of the BSE code
was based on routines from the EXC code.
Many thanks to the EXC developers for
sharing their code

optional
—>

%4
plasmon-pole




BSE with plane waves

Exchange term

_ 1 _ 1G-r —1Gr
U(UCk)(v’c’k’) — V Z U(G) <Ck|€ © |’Uk> <U/k/‘€ © ‘C/k/>
G0

bs_exchange_term = 0 to exclude this term (no local field effects)

Coulomb term

1 ') ‘r —1 2)I
Wwawew) = 77 > W q, (K — k) ('K |G T k) (ck|e (a7 K)

Ll \

The set of k-points
defines the g-mesh for W

The most CPU demanding term

0 --> Diagonal approximation for W
bs_coulomb_term = 1 --> Full W
3 --> Model dielectric function



Oscillator matrix elements

<k — (q, bl ‘G_i(q_l_G)'r’k, b2> — ﬁj[ukTqbl uLbZ} (G — G())

fftgw to control the aliasing due to the convolution

Zero padded FFT leads to a significant speed-up

Goedecker FFT library (fftalg 112)
Support for <
FFTW3, INTEL-MKL, IBM-EESL (fftalg 312)

....................

................

From http://www.unixer.de/publiéations/img/hoefler—tr-cea.pdf

k—-q=k—-—q+ Gy, k—qe BZ



http://www.unixer.de/publications/img/hoefler-tr-cea.pdf
http://www.unixer.de/publications/img/hoefler-tr-cea.pdf

PAW oscillator matrix elements

Precomputed using a spline
fit and stored in paw_pwij_t

v]

e~ i(a+G)-R [<¢ |€—’L(q+G) (r—R;) &, > <¢ ‘6—2(q+G) (r—R;)

b;)

The PAW form factors needed for the spline are tabulated on a 1D-mesh (m_paw_pwi j.F90)

/ jl(|q £ G|T) (¢nili¢njlj = q;niliq;njlj) dr
0

PAW projections are symmetrized on-the-fly in paw_symcprj.F90

<ﬁ?‘® — Zk - ZDamz <pn l; a‘ank>

R-IR*—t)=R® +L



BSE solvers

Three different solvers can be selected using bs_algorithm:

1. Direct diagonalization:

o Lapack or ScalLapack+MPI-IO (complete or partial diago)
o Eigenvectors, energies, DOS, oscillator strengths and excitonic amplitudes

@ Bad scaling with the size of the matrix
2 . Haydock iterative method
o Very efficient, excellent MPI scalability
@ Only optical spectra and an approximated DOS
3. Iterative diagonalization with the preconditioned CG method
o Direct access to binding energies, DOS, wavefunctions ...
© Efficient provided that the number of eigenvectors << N¢p,

@ Coupling is not supported yet



BSE spectra with diagonalization

Phys. Rev. Lett. 80, 4510-4513 (1998)

The inversion for each frequency is avoided
by using the spectral decomposition of H

=10 o 'F

For a non-singular operator

HIA) = ex|A)
~1 Oy ,
Oy = AN H—-w|l = A A
w = (A H —w] §\>(6/\_w)< !
H = Z €\ ’)\>O>\>\’ <>\/| The inverse for all frequencies at the
A\ price of a single diagonalization!

= TDA allows one to use standard methods (CG or direct diago)
= Only the resonant block is needed for TDA calculations

o The inclusion of the coupling block requires a more involved treatment...



Lanczos-Haydock algorithm

Comput. Phys. Commun. 20, 11 (1980)

(P|(w — R)_l |P) can be calculated bypassing completely the diagonalization!

Dense Hermitian matrix Real symmetric tridiagonal form
(* x k% *\ (al b \
X k% k% % . bo ao b3
L anczos basis
R=R'|l*x % x x x _ by =k
x k% k% x k%

= Only simple matrix-vector multiplications are required

= Only three vectors are needed to construct the Lanczos basis

1 =1
o a; = (il i)
) R|’L> — CLZ|Z> — bz’—l’i — 1>
1 p—
1) = H;%H i+ 1) bi + 1

A bisr = |IRJi) = aili) — bili — 1)
First vector of the

Lanczos basis 1 =1 4 1



http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655

Iterative solution of the BSE

Phys. Rev. B 59, 5441-5451 (1999)

bs as  bs : HPHQ
- , , : Pl(w— R)"YP) =
- (P|(w— R)™!|P) .
wWw—aj] — b2
Do 051 Y% W — ay — it 1
Terminator

The number of iterations required to converge is almost independent on the size of the
matrix (~100-200)

Easy to MPI parallelize

Terminator helps to converge the spectrum. Assuming &, = Qo, Bn = Boo forn > n’

s { (= ) = V(0 — ) — 5%}

t(w) =

Formalism can be generalized to non-Hermitian matrices. See NanoLetters, 6, 257, (2010)

- Eigenvalues and eigenvectors are not accessible
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Wavefunction descriptor

@ A single wavefunction is represented by the Fortran datatype wave_t
» wave_t contains three buffers for u(G), u(r), (p;|¥)

® The wavefunction descriptor, Wfd, is a container storing:

i) The array of wave_t: Wfd¥Wave(b,k,s)
ii) Internal tables for performing zero-padded FFT
iii) G-vectors and form factors for basic operations in G-space
iv) Tables with the MPI distribution of the states
® The internal status can be changed at run-time (e.g. the FFT mesh)

® Loops are MPI-parallelized depending on the availability of the states



Basic Methods

(A) u(G) = u(r) call wfd_get_ur(Wfd, ib, ik, spin, ur)

(B) u(G) = <pz’qj> call wfd_get_cprj(Wfd, ib, ik, spin, Crystal, Cp)

(C) FFT1 => FFT2 call wfd_change_ngfft(Wfd, Crystal, Psps, new_ngfft)

(D) l‘P> = Vn1|\1j> call wfd_vnlpsi(Wfd, band, 1k, spin, npw, Crystal,b&
& Psps, Hamk, vnl_psi, opaw_psi)

~ Bands, k-points and spins are accessed using their global index
o FFT is skipped if () is already in memory

o Execution stops and dump an error file if the wave function is not available



subroutine wfd_mkrho(Wfd,Crystal,Psps,Kmesh,Bstr,ngfftf,nfftf,rhor)

I Recalculate the internal FFT tables 1f needed.
call wfd_change_ngfft(Wfd,Cryst,Psps,ngfftf)

Il Distribute the states according to their availability.
Iter_bks = wfd_iterator_bks(Wfd, bks_mask=ABS(occ)>=tol8)

' Summing over (b,k,s).
do spin=1,nsppol
do 1k=1,nkibz
do 1ib_iter=1,1ter_len(Iter_bks,1k,spin)
1b = yield(Iter_bks,ib_iter,i1k,spin) ! Retrieve my band index.

call wfd_get_ur(Wfd,1ib,1k,spin,ur) ?L((}) :$>1L(r)

do 1ir=1,nfftf ! Accumulate my density.
rhor(ir,spin) = rhor(ir,spin) + &

& occ(ib,ik,spin)*CONIGCur(ir))*ur(ir)*wt(ik)
end do

end do II |° (j'
end do MPI parallelized!

end do B7

2
n(r) = Y

I Gather the total rhor. e ( ) 2{: fnk0’ 'nka‘

call xsum_mpi(rhor ,Wfd%comm,ierr) nko



Pros and Cons

Flexible, easy to use and to extend

» Support different levels of memory distribution

o Loops are MPI-parallelized automatically

) States can be replicated among the nodes
Useless states can be deallocated during the run if needed

Different instances of the same object

- Too flexible!

- Bands are not contiguous in memory, workspace arrays might be
needed for particular algorithms

- The internal buffers must be declared as pointers (F90 limitation)
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Future Developments

Inhomogeneous k-meshes

Better control of memory

Interpolation schemes in k-space
Temperature effects due to e-ph coupling
Non-collinear magnetism and spin orbit
Beyond static W: dynamical BSE

Generalization to finite momentum transfer



