Computing defect formation energies in GW

David Waroquiers, Matteo Giantomassi, Martin Stankovski, Gian-Marco Rignanese and Xavier Gonze

UCL/IMCN/NAPS

ABINIT Developper Workshop 2011 Han-sur-Lesse 13 April 2011 Amorphous silica

Structural,
Electronic and
Optical properties
=>

Many applications

Optoelectronic devices

Optical fibers

Defects, Radiations and Operating conditions

=>

Alteration of the properties!

Defects in bulk systems with DFT

- => Can have different charged states
- => Band-gap problem in DFT
- => Defect energy levels in the band gap
- => Poor description of defect formation energies
- => ...

Outline

- Defect formation energies in DFT
- Combining DFT and GW
- Application to hydrogen in a-SiO₂
- Shortcomings and possible workarounds
- Conclusion

Defect formation energies

$$E_f(X^q) = E_{tot}(X^q) - E_{tot}(bulk) - \sum_i n_i \mu_i + q(\epsilon_F + \epsilon_v + \Delta V)$$

 n_i : number of atoms added (> 0) or removed (< 0) from the bulk to generate the defect

 μ_i : chemical potential of the atoms added or removed

q : charge of the defect

 ϵ_F : Fermi level of the system

 ϵ_v : valence band maximum

 ΔV : alignment potential

Review article: C. G. Van de Walle & J. Neugebauer J. App. Phys., 2004, 95, 3851

Defect formation energies (2)

=> Charge transition levels

Defect formation energies (2)

=> Charge transition levels

Defect formation energies (2)

=> Charge transition levels

Hypothesis:

- Low defect concentration
- No complex conjugation with the dopants

Band alignment

$$E_f(X^q) = E_{tot}(X^q) - E_{tot}(bulk) - \sum_i n_i \mu_i + q(\epsilon_F + \epsilon_v + \Delta V)$$

Band alignment

The band gap problem

Experimental gap of amorphous silica :

~ 8.7-9.2 eV

- LDA bandgap: 5.2 eV
- Poor description of defect energy levels in the band gap

The band gap problem

• GW band gap is better: ~8.3-8.4 eV

GW Defect formation energies

- Band gap problem in DFT
- Poor description of defect energy levels in DFT
- Affinity/Ionization of electrons :
 A(N-1) = I(N) not fulfilled

P. Rinke et al., PRL 102 (2009), 026402 F. Bruneval, PRL 103 (2009), 176403

GW Defect formation energies

- Band gap problem in DFT
- Poor description of defect energy levels in DFT
- Affinity/Ionization of electrons :
 A(N-1) = I(N) not fulfilled
- "Reference" formation energy
- Relaxation energies (horizontal) at fixed number of electrons computed in DFT
- Vertical transitions (electron addition or removal) computed in GW
 - P. Rinke et al., PRL 102 (2009), 026402
 - F. Bruneval, PRL 103 (2009), 176403

GW Defect formation energies (2)

H⁰: Start with the formation energy of H⁺ (assumed to be well

defined in LDA)

$$E_f(H^0) = E_f(H^+, \epsilon_F = 0) + E_{relax}^{H^+ \to H^0} + A(+/0)$$

=> first relax, then electron addition

=> first electron addition, then relax

Electron addition:

- => system with charge +1
- => system with charge 0

Application to hydrogen in a-SiO₂

 20 different models with 72 atoms each

Structural properties:

Coordination numbers, bond lengths, angles, ...

No edge sharing tetrahedrons

Application to hydrogen in a-SiO₂

Hydrogen containing silica

Different charged states of hydrogen:

Positive hydrogen

Negative hydrogen

O-H distance : ~1 Å

Si-H distance: ~1.5 Å

Neutral hydrogen: goes into the larger voids of the system

LDA Formation energies of H^{+/0/-}

$$E_f(X^q) = E_{tot}(X^q) - E_{tot}(bulk) - \sum_i n_i \mu_i + q(\epsilon_F + \epsilon_v + \Delta V)$$

Problem with charged states: self-interaction with the neighboring images of the net charge => Makov-Payne correction for positive and negative charged states:

$$E_{tot}(L) = E_{tot}(L \to \infty) - \frac{q^2 \alpha}{2\epsilon L}$$
=> + 0.47 eV

Formation energy of H⁺ (ϵ_F =0): -1.67 eV (± 0.18 eV) (Godet & Pasquarello: -1.28eV)

GW Formation energies of H^o

$$E_f(H^0) = E_f(H^+, \epsilon_F = 0) + E_{relax}^{H^+ \to H^0} + A(+/0)$$

GW Formation energies of H^o

$$E_f(H^0) = E_f(H^+, \epsilon_F = 0) + E_{relax}^{H^+ \to H^0} + A(+/0)$$

E ^f (H ⁰)	A(q-1/q)	I(q/q-1)
Path 1	5.02	3.93
Path 2	3.39	3.68

=> Large variations

- Depending on path
- Depending on the way the GW electron affinities are calculated

... anyway let's try to continue with H⁻

Defect formation energy

GW Formation energies of H

$$E_f(H^-) = E_f(H^0, \epsilon_F = 0) + E_{relax}^{H^0 \to H^-} + A(0/-)$$

E ^f (H ⁻)	A(q-1/q)	I(q/q-1)
Path 1	8.88	8.1
Path 2	1	7.13

=> Large variations

What's wrong?

- Large structural changes
- PPM G₀W₀ is not enough

GW formation energies with transition paths

First method:

$$E_f^{GW}[D^0] = E_f^{LDA}[D^{+1}, \epsilon_F = 0] + \Delta[+1, R_D^0, R_D^{+1}] + A[+1, R_D^0]$$

Second method:

$$E_{f}[H^{0}] = [E_{tot}(SC[R_{H^{0}}], q = 0) - E_{tot}(SC[R_{T}], q = 0)]$$

$$[E_{tot}(SC[R_{T}], q = +1) - E_{tot}(SC[R_{H^{+}}], q = +1)]$$

$$\left[E_{tot}(SC[R_{H^{+}}], q = +1) - E_{ref} - \frac{1}{2}E_{tot}(H_{2})\right]$$

$$[E_{tot}(SC[R_{T}], q = 0) - E_{tot}(SC[R_{T}], q = +1)]$$

Choice for R₊?

$$E_{tot}(SC[R_T], q = 0) = E_{tot}(SC[R_T], q = +1)$$

$$=> \begin{array}{ccc} E_f[H^0] = & E_{tot}(SC[R_{H^0}], q=0) - E_{tot}(SC[R_{H^+}], q=+1) \\ & + E_f(H^+, \epsilon_F=0) + A(SC[R_T], q=+1) \end{array}$$

GW formation energies with transition paths

First method:

$$E_f^{GW}[D^0] = E_f^{LDA}[D^{+1}, \epsilon_F = 0] + \Delta[+1, R_D^0, R_D^{+1}] + A[+1, R_D^0]$$

Second method:

$$=> E_f[H^0] = E_{tot}(SC[R_{H^0}], q = 0) - E_{tot}(SC[R_{H^+}], q = +1) + E_f(H^+, \epsilon_F = 0) + A(SC[R_T], q = +1)$$

GW formation energies with transition paths

E ^f (H ⁰)	A(q-1/q)	I(q/q-1)
Path 1	5.02	3.93
Path 2	3.39	3.68

=> Defect formation energy of H⁰ with transition path : 3.16 eV (or 3.6 eV)

... we are still not happy ...

Possible error from G₀W₀

- => Plasmon pole model ?
- => Self-consistency?
- => Vertex corrections?
- => Better starting point ?

Start from a DFT calculation with the meta-GGA functional of Tran and Blaha Currently under testing (see poster)

"Qualitative" change in charge transition levels

=> The transition level E(+/-) is shifted to a higher Fermi energy

Conclusions

- Defect formation energies
 - in DFT-LDA
 - with a combined DFT/GW scheme
- Hydrogen formation energies still under debate
- Qualitative results
- There are still some problems to define an accurate formation energy within the GW formalism.

Acknowledgments

- Prof. X. Gonze
- Prof. G.-M. Rignanese
- Dr. M. Stankovski
- Dr. M. Giantomassi

Thank you for your attention

GW density of states

1) Positive hydrogen

2) Addition of one electron

2) Relaxation to neutral configuration

