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Motivation

m Two primary projects in my experimental lab involve linear
optical response and linear magnetic field response.

m Both can be addressed by computing response to finite,
homogeneous fields.

m Plan of attack: minimize E — P - E or E — M - B subject to
constraints.

m Outcome: P as a function of E, hence susceptibility, and
wavefunctions in presence of magnetic field, hence orbital
currents.
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Electric Fields Motivation

A measurement we make in the

. Introduction to the Photoelastic Response
lab:

Birefringent Crystals Between Crossed Polarizers
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Magnetic Fields Motivation

Another measurement we
make in the lab:
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All implementation done in PAW

m Recall that Projector Augmented Wave method yields
all-electron accuracy in valence space using modest
planewave size

m For electric fields, this approach is efficient

m For magnetic fields, it is also easiest because it provides a
simple way to include gauge dependence of vector
potential properly
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What to Calculate

m “Obvious” coupling between external electric field E and
electric charge leads to energy term eE - r

m This term is ok for finite systems but not for infinite
systems!

m Appear to have lost all bound states!



Finite Fields

L Homogeneous Finite Electric Fields

Modern Theory of Polarization

m King-Smith and Vanderbilt showed that polarization does
not suffer from unboundedness:

ie
P——2 % [ dk
(27‘(’)3 - \/BZ (unk|vk|unk>

m Nunes and Gonze showed how polarization enters into a
well-posed minimization scheme with finite electric field:

Elv,E] = E[¢] - QE - P(¢)
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Discretization

The continuum version of (unk|Vk|unk) leads to numerical
problems, while a discretized version does not:

N

fe 1 «
Py - bi = QNI Zlmlaneth”kJrAk
with
M#\iﬁki—’—Aki = <umki|Unki+Aki>'
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PAW Transform

We must consider
(Gnk‘TJivak‘anU

Note that V acts on both T and |G). T part gives an "on-site"
dipole contribution, while |G) part is discretized:
Kk+Ak _ g~ e Sl Al =1 ~
Mmn - (umk‘unk—i—AkH‘Z(Umk|qu>qu(Ak)<prk+Ak|Unk+Ak>a
q7r7l

Qi (Ak) = e 78K [(gh e AU |pl) — (ghle ARl
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Inclusion of a Finite Electric Field

Minimize E = Eqg — P - E, where:
m P is computed via PAW transform and discretization as
above
m Generalized norm constraint is imposed: (¢n|S|¥m) = dnm
m On-site dipole contribution from T is included

m Form JE /§(unk| as gradient in conjugate gradient
algorithm.
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Code Additions

m Additional PAW terms added to cgwf . F90 for conjugate
gradient minimization

m Compute necessary (Gmk||5('qk> terms (“cprj ") by symmetry
where possible:

<pj |‘Uan Ik - Z DozmJ anI a‘wnk>

Currently works for synmor phi - 0 only
m Parallelized over k points
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Applications

m Born effective charge: Zj} ; = dFj,/Ep

m High frequency susceptibility: x.s = dP,/dEg

m Low frequency susceptibility: same but with relaxation in

field.
Compound Z* €0 €>®
AIP (calc) 2.22 10.26 7.97
(expt) 228 9.8 7.5
AlAs (calc) 2.18 11.05 8.78
(expt) 2.20 10.16 8.16
AISh (calc) 1.84 1254 11.21
(expt) 1.93 11.68 9.88
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Problems and Advances

m Until 2005, best approach to magnetic fields in periodic
insulators was the long wavelength approach of Louie and
co-workers: B — B cos(q - r) withq — 0.

m In 2005 and 2006, Ceresoli, Thonhauser, Resta, and
Vanderbilt established:

27‘1’)3 Im Z dk (OkUnsk| X (HkOnn' + Ennk )| Ok Unk)

nn’

i
= 5 Z/Bz dk(OkUnk| % [OkUnk)
n
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Magnetic Translation Symmetry

m Recall gauge-dependent Hamiltonian:

1 1
== —A? 4V
5P+ A+

m In 2010, Essin, Turner, Moore and Vanderbilt discussed
magnetic translation symmetry:

H

~ —iB-ryxry/2c
Orl,fz = OflJze 1x12/

where O has lattice symmetry.

m They used this together with density operator perturbation
theory to describe magneto-electric coupling.

p=pp—pt=pp°+ %"
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A New Theory of Orbital Magnetic Susceptibility

Based on the the previous ideas XG has developed a complete
treatment of magnetic field response in a periodic insulator. Key
new ingredient:

Tk = VW

C A (s

m=
X (0, + O Vi) (Day * + O Wi ),

dk ~
EM — / L SN () S () N
87 (27)3 r[(/)kv\/ + kaC) Kl
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Checking the Theory

Using the factorization formula % oo [ %

in density operator perturbation o A ]
theory, XG developed an o B
expression for the energy to ! [
second order, hence orbital a2 e —

4th order fit

magnetic susceptibility.

We then checked it with a tight
binding model: analytical
versus numerical.
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Implementing it all in ABINIT

Implementing the magnetization formula is fairly
straightforward:

(OkUnrk| x (Hkdnn + Ennvk )| Ok Unk)

Derivatives are discretized, as in electric field case:

1
|OkUnk) = > [lUnk+b) — [Unk—b)]

and
<unk1 |Hk2,k2|unk3>
which in the PAW case leads to computation of "phase-twisted"

D; terms. Have completed kinetic energy, Hartree, and D, Vyc is
almost done.
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Example Phase-twisted Term

See appendix of Torrent et al. Comp. Mater. Sci. 42, 337
(2008):

(@ilvu[ntley) — (dilvalfit]ldy) —

el (7oko=awcki) 1 g gl (ko —aicki)- (=N, [n1]| ¢y ) —

ei(abkb_akkk)'|<¢'§i|ei(Ubkb_Ukkk)‘(r_|)VH[ﬁ1]|g5j> 1)



Finite Fields

L Homogeneous Finite Magnetic Fields

Finite magnetic field

m XG and | have also developed expressions for PAW energy
in finite magnetic field and orbital current

m Will add to cgwf . F90 and out scf cv. F90 respectively

m Result will be current and hence NMR observables in
insulators.
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Summary

m Polarization and finite electric field in PAW are
production-ready, parallelized over k points

m New theory of orbital magnetic susceptibility has been
derived and fully checked

m PAW expressions for theory have been derived and mostly
coded

m First stage outcome will be orbital currents and NMR
shielding
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