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Introduction

Motivation

Two primary projects in my experimental lab involve linear
optical response and linear magnetic field response.

Both can be addressed by computing response to finite,
homogeneous fields.

Plan of attack: minimize E − P · E or E − M · B subject to
constraints.

Outcome: P as a function of E, hence susceptibility, and
wavefunctions in presence of magnetic field, hence orbital
currents.
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Electric Fields Motivation

A measurement we make in the
lab:
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Magnetic Fields Motivation

Another measurement we
make in the lab:
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All implementation done in PAW

Recall that Projector Augmented Wave method yields
all-electron accuracy in valence space using modest
planewave size

For electric fields, this approach is efficient

For magnetic fields, it is also easiest because it provides a
simple way to include gauge dependence of vector
potential properly
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Homogeneous Finite Electric Fields

What to Calculate

“Obvious” coupling between external electric field E and
electric charge leads to energy term eE · r

This term is ok for finite systems but not for infinite
systems!

Appear to have lost all bound states!
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Homogeneous Finite Electric Fields

Modern Theory of Polarization

King-Smith and Vanderbilt showed that polarization does
not suffer from unboundedness:

P = −
ie

(2π)3

∑

n

∫

BZ
dk〈unk|∇k|unk〉

Nunes and Gonze showed how polarization enters into a
well-posed minimization scheme with finite electric field:

E [ψ,E] = E [ψ]− ΩE · P(ψ)
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Homogeneous Finite Electric Fields

Discretization

The continuum version of 〈unk|∇k|unk〉 leads to numerical
problems, while a discretized version does not:

Pel · bi =
fe
Ω

1
N i
⊥

N i
⊥
∑

Im ln

N i
‖
∏

det Mki ,ki+∆ki

with
Mki ,ki+∆ki

mn = 〈umki
|unki+∆ki

〉.
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Homogeneous Finite Electric Fields

PAW Transform

We must consider
〈ũnk|T

†
k i∇kTk|ũnk〉

Note that ∇ acts on both T and |ũ〉. T part gives an "on-site"
dipole contribution, while |ũ〉 part is discretized:

Mk,k+∆k
mn = 〈ũmk|ũnk+∆k〉+

∑

q,r ,I

〈ũmk|p̃
I
qk〉Q

I
qr (∆k)〈p̃I

rk+∆k|ũnk+∆k〉,

QI
qr (∆k) = e−iI·∆k

[

〈ϕI
q |e

−i∆k·(r−I)|ϕI
r 〉 − 〈ϕ̃I

q |e
−i∆k·(r−I)|ϕ̃I

r 〉
]

.
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Homogeneous Finite Electric Fields

Inclusion of a Finite Electric Field

Minimize E = E0 − P · E, where:

P is computed via PAW transform and discretization as
above

Generalized norm constraint is imposed: 〈ψn|S|ψm〉 = δnm

On-site dipole contribution from T is included

Form δE/δ〈umk| as gradient in conjugate gradient
algorithm.
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Homogeneous Finite Electric Fields

Code Additions

Additional PAW terms added to cgwf.F90 for conjugate
gradient minimization

Compute necessary 〈ũmk|p̃I
qk〉 terms (“cprj”) by symmetry

where possible:

〈p̃I
j |ΨnRk〉 = eik·L

∑

α

D
lj
αmj

(R−1)〈p̃I′
nj ljα|Ψnk〉,

Currently works for symmorphi 0 only

Parallelized over k points
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Homogeneous Finite Electric Fields

Applications

Born effective charge: Z ∗
jαβ = dFjα/Eβ

High frequency susceptibility: χαβ = dPα/dEβ

Low frequency susceptibility: same but with relaxation in
field.

Compound Z ∗ ǫ0 ǫ∞

AlP (calc) 2.22 10.26 7.97
(expt) 2.28 9.8 7.5

AlAs (calc) 2.18 11.05 8.78
(expt) 2.20 10.16 8.16

AlSb (calc) 1.84 12.54 11.21
(expt) 1.93 11.68 9.88
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Outline

1 Introduction

2 Homogeneous Finite Electric Fields

3 Homogeneous Finite Magnetic Fields



Finite Fields 18/25

Homogeneous Finite Magnetic Fields

Problems and Advances

Until 2005, best approach to magnetic fields in periodic
insulators was the long wavelength approach of Louie and
co-workers: B → B cos(q · r) with q → 0.

In 2005 and 2006, Ceresoli, Thonhauser, Resta, and
Vanderbilt established:

M =
1

2c(2π)3 Im
∑

nn′

∫

BZ
dk〈∂kun′k|× (Hkδnn′ +Enn′k)|∂kunk〉

C =
i

2π

∑

n

∫

BZ
dk〈∂kunk| × |∂kunk〉
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Homogeneous Finite Magnetic Fields

Magnetic Translation Symmetry

Recall gauge-dependent Hamiltonian:

H =
1
2
(p +

1
c

A)2 + V

In 2010, Essin, Turner, Moore and Vanderbilt discussed
magnetic translation symmetry:

Or1,r2 = Ōr1,r2e−iB·r1×r2/2c

where Ō has lattice symmetry.

They used this together with density operator perturbation
theory to describe magneto-electric coupling.

ρ = ρρ→ ρ1 = ρ1ρ0 + ρ0ρ1
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Homogeneous Finite Magnetic Fields

A New Theory of Orbital Magnetic Susceptibility

Based on the the previous ideas XG has developed a complete
treatment of magnetic field response in a periodic insulator. Key
new ingredient:

T̃k = ṼkW̃k

+

∞
∑

m=1

1
m!

(

i
2c

)m
(

m
∏

n=1

εαnβnγnBαn

)

×(∂β1 · · · ∂βmṼk)(∂γ1 · · · ∂γmW̃k),

E (n) =

∫

BZ

dk
(2π)3 Tr[(ρ̃(n)kVV + ρ̃

(n)
kCC)H̃k].
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Homogeneous Finite Magnetic Fields

Checking the Theory

Using the factorization formula
in density operator perturbation
theory, XG developed an
expression for the energy to
second order, hence orbital
magnetic susceptibility.
We then checked it with a tight
binding model: analytical
versus numerical.
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Homogeneous Finite Magnetic Fields

Implementing it all in ABINIT

Implementing the magnetization formula is fairly
straightforward:

〈∂kun′k| × (Hkδnn′ + Enn′k)|∂kunk〉

Derivatives are discretized, as in electric field case:

|∂kunk〉 =
1
2
[|unk+b〉 − |unk−b〉]

and
〈unk1 |Hk2,k2|unk3〉

which in the PAW case leads to computation of "phase-twisted"
Dij terms. Have completed kinetic energy, Hartree, and D̂, vxc is
almost done.
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Homogeneous Finite Magnetic Fields

Example Phase-twisted Term

See appendix of Torrent et al. Comp. Mater. Sci. 42, 337
(2008):

〈φi |vH [n
1]|φj〉 − 〈φ̃i |vH [ñ

1]|φ̃j〉 →

ei(σbkb−σk kk )·I〈φi |e
i(σbkb−σk kk )·(r−I)vH [n

1]|φj〉−

ei(σbkb−σk kk )·I〈φ̃i |e
i(σbkb−σk kk )·(r−I)vH [ñ

1]|φ̃j〉 (1)
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Homogeneous Finite Magnetic Fields

Finite magnetic field

XG and I have also developed expressions for PAW energy
in finite magnetic field and orbital current

Will add to cgwf.F90 and outscfcv.F90 respectively

Result will be current and hence NMR observables in
insulators.
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Homogeneous Finite Magnetic Fields

Summary

Polarization and finite electric field in PAW are
production-ready, parallelized over k points

New theory of orbital magnetic susceptibility has been
derived and fully checked

PAW expressions for theory have been derived and mostly
coded

First stage outcome will be orbital currents and NMR
shielding
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